MANIPULATING UHD VIDEO TRAFFIC

Yan Ye
InterDigital Communications
July 18, 2013
Outline

• The UHD buzz
 • What is UHD?
• The UHD traffic
 • Handling UHD with HEVC
 • Handling UHD with SHVC
• Beyond HEVC video compression
The UHD buzz

- UHD, or Ultra High Definition, is the new buzz in the industry
 - CES 2013 and NAB 2013
 - Japan plans 4K broadcasting in 2014 - FIFA World Cup
 - 8K broadcasting planned in 2020
 - Sony’s affordable 4K UHD TV and media hub
 - 55in at $4999 and 65in at $5999

10 preloaded features and short video

FMX-XP 4K media player and hub ($699)
UHD product announcements

DISPLAYS
- SAMSUNG
- LG
- TOSHIBA
- SEIKI
- SONY
- ViewSonic
- SHARP

BROADCASTERS
- BBC
- Comcast
- ESPN
- NHK

REAL TIME 4K ENCODER/DECODERS
- harmonic
- QUALCOMM
- ateME
- BROADCOM

INDUSTRY CONSORTIUM
- ATSC
- HDMI
- Blu-ray Disc

CAMERAS
- RED
- ASTRO
What is UHD?

UHD is defined by ITU-R BT.2020
- Higher resolution: 4Kx2K, 8Kx4K
- Higher frame rate: up to 120fps
- Higher bit depth: 10- and 12-bit
- Wider color gamut

<table>
<thead>
<tr>
<th></th>
<th>High Definition</th>
<th>Ultra High Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITU-R BT series</td>
<td>BT.709-5 (part 2)</td>
<td>BT.2020</td>
</tr>
<tr>
<td>Spatial</td>
<td>1920x1080</td>
<td>7680x4320, 3840x2160</td>
</tr>
<tr>
<td>Temporal</td>
<td>Frame rate 60, 50, 30, 25, 24</td>
<td>120, 60, 50, 30, 25, 24</td>
</tr>
<tr>
<td></td>
<td>Scan Progressive, interlaced</td>
<td>Progressive</td>
</tr>
<tr>
<td>Primary colors</td>
<td>Red primary (0.640, 0.300)</td>
<td>(0.708, 0.292)</td>
</tr>
<tr>
<td></td>
<td>Green primary (0.150, 0.330)</td>
<td>(0.170, 0.797)</td>
</tr>
<tr>
<td></td>
<td>Blue primary (0.600, 0.060)</td>
<td>(0.131, 0.046)</td>
</tr>
<tr>
<td></td>
<td>White point (0.3127, 0.3290) (D65)</td>
<td></td>
</tr>
<tr>
<td>Coding format</td>
<td>8- and 10-bit</td>
<td>10- and 12-bit</td>
</tr>
</tbody>
</table>
In raw form, UHD signals carry massive data

* Assuming 8 bits per sample per color component in RGB/YCbCr 4:4:4
The need for HDMI 2.0

To support UHD-1 @ 60 Hz, we need HDMI 2.0, with expected throughput of 18Gb/s.

UHD TV

Display

Decoding

Streaming box

HDMI cable
Outline

• The UHD buzz
 • What is UHD?
• The UHD traffic
 • Handling UHD with HEVC
 • Handling UHD with SHVC
• Beyond HEVC video compression
Distributing UHD video using HEVC/H.265

• UHD video distribution requires more efficient video compression algorithms

• The High Efficiency Video Coding standard was finalized by the JCT-VC committee in Jan 2013
 • ISO/IEC/MPEG: MPEG-H Part 2 (23008-2) HEVC
 • ITU-T: H.265

• Roughly half the bit-rate at the same subjective quality compared to H.264/AVC

• HEVC delivers higher performance gain for higher resolution video
HEVC Performance: Subjective Quality based

DSIS (Double Stimulus Impairment Scale) according to ITU-R BT.500

<table>
<thead>
<tr>
<th>Sequences</th>
<th>Bit rate savings at same MOS (HEVC vs. H.264/AVC HP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080p</td>
<td></td>
</tr>
<tr>
<td>BQTerrace</td>
<td>63.1%</td>
</tr>
<tr>
<td>BasketballDrive</td>
<td>66.6%</td>
</tr>
<tr>
<td>Kimono</td>
<td>55.2%</td>
</tr>
<tr>
<td>ParkScene</td>
<td>49.7%</td>
</tr>
<tr>
<td>Cactus</td>
<td>50.2%</td>
</tr>
<tr>
<td>Average</td>
<td>57%</td>
</tr>
</tbody>
</table>

WVGA (720x480)	
BQMall	41.6%
BasketballDrill	44.9%
PartyScene	29.8%
RaceHorses	42.7%
Average	40%

More gain for higher resolution

Notes:
- Entertainment applications
- Random Access config
- HEVC settings: HM5.0, QP = \{31, 34, 37, 40\}
- H.264/AVC: JM18.2* (imp encoder control), QP = \{27, 30, 33, 34\}
HEVC performance for different resolution sources

- 3GPP DASH is evaluating HEVC performance across different resolutions
- Compared to H.264/AVC, HEVC consistently achieves higher performance gain as resolution increases

<table>
<thead>
<tr>
<th>Resolution</th>
<th>S4-130672</th>
<th>S4-130708</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080p</td>
<td>42.2%</td>
<td>40.4%</td>
</tr>
<tr>
<td>720p</td>
<td>34.9%</td>
<td>35.8%</td>
</tr>
<tr>
<td>480p</td>
<td>31.9%</td>
<td>34.1%</td>
</tr>
<tr>
<td>240p</td>
<td>27.1%</td>
<td>30.9%</td>
</tr>
<tr>
<td>Average</td>
<td>33.3%</td>
<td>35.3%</td>
</tr>
</tbody>
</table>

Test settings:
- 5 original 1080p sequences were downsampled at various ratios
- Random Access configurations (open and closed GOP)
- PSNR based measurement
UHD signal is easier to compress

Test sequences: Traffic, 3940x2048, and 1920x1024, 30fps

Although UHD has more pixels, the bit cost per pixel is lower
Handling UHD with HEVC

- HEVC offers significantly enhanced compression capabilities
- UHD bit cost is “cheaper per pixel”
- Recent UHD broadcasting trials using HEVC:
 - UHD-1 @ 60fps: 35Mbps
 - UHD-2 @ 60fps: 85Mbps

Real time HEVC encoding: dividing 1 picture into 17 strips

HEVC encoder will continue to mature, bringing down bit rate

- YouTube 1080p video coded using H.264:
 - Standard quality: 8Mbps
 - high quality: 50Mbps
Outline

• The UHD buzz
 • What is UHD?
• The UHD traffic
 • Handling UHD with HEVC
 • Handling UHD with SHVC
• Beyond HEVC video compression
The case for scalable video coding

• To have the “look out the window” viewing experience, UHD displays have large screen sizes
 • Samsung 4K TV 85S9: 85”
 • ASUS 4K monitor: 39”

• Meanwhile, 1080p will continue to be the dominant format for portable devices

Co-existence of UHD and HD → the case for scalable video coding
Large Scale Video Delivery System (e.g. YouTube)
Storing UHD on edge servers

- Today, multiple coded copies of the same video are stored on edge servers.

- With UHD, we will have even more versions of the same content taking up much more server space.

 UHD-1: 30Mbps x 2.5 hours ≈ 34GB
 UHD-2: 75Mbps x 2.5 hours ≈ 84GB

- Rather than storing independent versions (simulcast), scalable coding improves storage efficiency.

 UHD-1: 30Mbps x 2.5 hours x 70% ≈ 24GB → 10GB saving
 UHD-2: 75Mbps x 2.5 hours x 70% ≈ 59GB → 25GB saving
Streaming UHD with scalable codec

With scalable codec (e.g. SVC), HTTP streaming protocols (e.g. MPEG DASH) allow the client to receive base layer stream from server A and enhancement layer stream from server B.

Problem: compared to single layer coding, scalable stream (BL + EL) increases bandwidth of the last hop.

Server B: enhanced UHD service, farther away from UHD clients.

Solution: Services such as Google fiber improve the last-hop bandwidth significantly.

Increased traffic on last hop.

Proxy server (ISP).

UHD client.
SHVC: scalable extensions of HEVC

- HEVC extensions currently under development:
 - JCT-VC is working on range extensions and scalable extensions (SHVC)
 - JCT-3V is working on various 3D extensions

<table>
<thead>
<tr>
<th>Feature</th>
<th>Standard</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SVC</td>
<td>MVC</td>
</tr>
<tr>
<td>Temporal</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Spatial</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SNR</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Standard</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>View</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bit-depth</td>
<td></td>
<td>AhG</td>
</tr>
<tr>
<td>Color gamut</td>
<td></td>
<td>AhG</td>
</tr>
<tr>
<td>Chroma format</td>
<td></td>
<td>AhG</td>
</tr>
</tbody>
</table>
SHVC Features

- Inter-layer prediction is enabled through the “reference index” based concept
- Similar to multi-view solutions such as H.264/MVC and MV-HEVC
- Enhancement layer prediction = temporal references + inter layer references
- Multiple coding loops
- Upsampling applied to both reconstructed texture and motion field
 - Texture upsampling: 8-tap/4-tap filters for luma/chroma
 - Motion field mapping: resampled motion field for efficient EL TMVP

Design considerations
1. Minimal changes to block level logics of single layer codec
2. Reduced implementation cost
3. Unified design with multi-view
4. Hybrid codec support
5. Easy to extend to other scalabilities
SHM1.0 Performance

<table>
<thead>
<tr>
<th>SHM1.0 performance on HD→UHD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rate reduction vs simulcast</td>
<td>-18%</td>
</tr>
<tr>
<td>(BL + EL)</td>
<td></td>
</tr>
<tr>
<td>Rate reduction vs simulcast</td>
<td>-30%</td>
</tr>
<tr>
<td>(EL only)</td>
<td></td>
</tr>
<tr>
<td>Rate increase vs single layer</td>
<td>22%</td>
</tr>
</tbody>
</table>

Notes:
- Scalable software: SHM1.0
- Single layer software: HM8.1
- Random Access config
- 2x scalability: HD → UHD
- QPB = \{22, 26, 30, 34\}
- QPE = QPB + \{0, 2\}

- Fixed base layer coding
- Additional gain can be obtained with cross layer optimization
- Further coding efficiency gain can be achieved with other inter layer processing technologies
- Core Experiment on inter layer processing
 - Adaptive inter layer filters
 - Chroma enhancement filters
 - Inter layer SAO
 - Bi-lateral inter layer filters, etc
- Differential coding based inter layer reference enhancement
Chroma enhancement filters

• High pass filter on neighboring luma pixels to restore or enhance chroma signal quality

• As inter layer processing step, latency issue can be solved by operating directly on the base layer luma signal
Chroma enhancement filter performance

R-D performance (Cb), PeopleOnStreet, Random Access 2x scalability

- SHM2.0
- SHM2.0+chroma enh
- single layer coding

PSNR (dB) vs. bitrate (kbps) graph showing a 0.6 dB improvement.
Handling UHD traffic with SHVC

• UHD and HD content will likely co-exist in the foreseeable future → scalable codec can provide benefits
• Improve storage efficiency on edge servers
• Improve transmission efficiency of the UHD content
• One of SHVC’s main design considerations is to provide scalability with low implementation cost
Outline

• The UHD buzz
 • What is UHD?

• The UHD traffic
 • Handling UHD with HEVC
 • Handling UHD with SHVC

• Beyond HEVC video compression
HEVC = best hybrid block-based video codec?

• How much more gain is achievable within the hybrid block based video coding framework?

Big winners in HEVC
• Large coding blocks
• Large transforms
• Quad-tree partition of blocks
• Sample Adaptive Offsets
• Advanced Motion Vector Prediction

Tool-by-tool performance: Entertainment Applications

<table>
<thead>
<tr>
<th></th>
<th>Up to 16x16 CTB</th>
<th>Up to 8x8 Transform</th>
<th>RQT depth =1</th>
<th>TMVP off</th>
<th>SAO off</th>
<th>AMP off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>28.2%</td>
<td>12.2%</td>
<td>0.8%</td>
<td>2.6%</td>
<td>2.4%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Class B</td>
<td>18.4%</td>
<td>9.3%</td>
<td>1.1%</td>
<td>2.2%</td>
<td>2.4%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Class C</td>
<td>8.5%</td>
<td>4.2%</td>
<td>1.1%</td>
<td>2.4%</td>
<td>1.7%</td>
<td>1.1%</td>
</tr>
<tr>
<td>Class D</td>
<td>4.2%</td>
<td>2.4%</td>
<td>1.1%</td>
<td>2.7%</td>
<td>0.5%</td>
<td>0.9%</td>
</tr>
<tr>
<td>Average</td>
<td>11.0%</td>
<td>5.4%</td>
<td>1.0%</td>
<td>2.5%</td>
<td>1.6%</td>
<td>0.9%</td>
</tr>
</tbody>
</table>
Block-based hybrid video coding framework

What did not work in HEVC
- Adaptive Loop Filters
- Linear Model (LM) chroma
- Short Distance Intra Prediction
- Decoder side motion derivation, ...

Is HEVC the last block based codec?
Unknown: the true bound of the rate-distortion curves

\[\text{Pred}_C[x,y] = \alpha \cdot \text{Rec}_L[x,y] + \beta \]

LM chroma intra pred

SDIP
Non-square partitions and transforms:
- 32x32CU → 8x32/32x8
- 16x16CU → 4x16/16x4 → 1x16/16x1
- 8x8CU → 2x8/8x2, ...
Beyond block-based hybrid video coding

Promise:
Captures perceptually important information without pixel based coding

Challenges:
- Quality evaluation
- Segmentation
- Complexity increase
Concluding thoughts

• UHD offers “look out the window” viewing experience

Broadband Unlimited conference, CES 2013, panel discussion on UHD TV

“When you have business at the production end and consumers showing big interest, the question is how do we distribute it to the home?”

-Larry Thorpe, senior fellow, professional engineering/solutions, Canon USA

• HEVC and its scalable extensions will facilitate UHD content distribution

• Improvements in network bandwidth will continue

• Other aspects of BT.2020 (e.g. wider color gamut) will continue to develop in the coming years
References

9. SHVC working draft 2, JCTVC doc. no. JCTVC-M1008, April 2013.
10. HEVC scalable extensions Core Experiment 3 (SCE3): inter layer filtering, JCTVC doc. no. JCTVC-M1103, April 2013.
11. InterDigital, *Chroma enhancement for ILR picture*, JCTVC doc. no. JCTVC-L0059, January 2013
THANK YOU

Q & A